New: Agilent 7200 Series Q-TOF with DIP

→ combines the advantage of the <u>Q-TOF System</u> (highly accurate mass assignments) with the benefit of the <u>DIP</u> (fast screening method)

El Specification: Original El Source vs. Modified El Source

cientific Instruments Manufacturer GmbH

El Specification Report with Modified El Source and DIP

EI Installation Specification Report

Integration Peak List

RT	Height	Area	SN
5.499	97200.74	71519.71	841783.1
5.499	84877.99	70742.04	735065
5.497	95908.27	70369.23	830590
5.498	100321.8	71062.79	868812.3
5.496	96396.2	75623.58	834815.5
5.496	89940.91	69772.4	778911.2
5.499	89469.49	71820.37	774828.5
5.496	93774.22	71970.23	812108.6
5.498	93486	71610	868812.3

Peak List

Name	m/z	Abund	Formula	Ion	Resolution	Mass Accura
	271.9873	96396.2			12971	2.21
	271.9866	95908.27			12790	0.37
	271.9869	100321.81			12851	0.74
	271.9857	89691.01			13053	3.68
	271.9862	97200.74			12635	1.84
					13053	3.68

Results	Overall Status
5.39	PASSED
2.49	
868812	
3.68	
13053	
	Results 5.39 2.49 868812 3.68 13053

t(p,N-1)	2.99800
Amount fg	1000.00
N	8.00
Confidence	0.99
IDL < 250 fg	74.66

7200 Q-TOF: CI Specification: original CI source vs. modified CI source

- →Specification with original GC-Q-TOF (100 pg BZP²), m/z 183.0804)
- → Specification with original GC-Q-TOF and modified source (100 pg BZP²⁾, m/z 183.0804)
- →Specification with GC-Q-TOF, modified source and open gate (100 pg BZP²⁾, m/z 183.0804)

 $^{2)}$ BZP = Benzophenone

PCI Specification Report with modified CI source and DIP

PCI Installation Specification Report

Integration Peak List

RT		Height	Area	SN
	7.449	677905.38	873776.78	1551.4
	7.447	653219.08	853866.23	1639.1
	7.45	660845.69	856612.23	1657.5
	7.448	645686.96	851918.78	1603
	7.45	646338.92	846005.92	1546.3
	7.449	656799	856436	1657.5

Peak List

Name	m/z	Abund	Formula	Ion	Resolution	Mass Accura
	183.0811	9970.59	-		11896	3.82
	183.081	10593.36			11486	3.28
	183.0809	7875.33		2	11596	2.73
	183.081	7935.55			11388	3.28
	183.081	13971.67			11796	3.28
				-	11896	2.73

New: LIFDI Liquid Injection Field Desorption ionisation SOFT IONISATION FOR 7200 GC Q-TOF

Scientific Instruments Manufacturer GmbH

Source: Linden ChroMasSpec GmbH, Germany

ADVANTAGES OF LIFDI

Liquid Injection Field Desorption ionisation

- combines all feature of FI and FD but with higher sensitivity
- ionizes <u>non-polar</u> and <u>polar</u> as well as <u>volatile</u> – <u>non volatile</u> samples
- analyzes gaseous, liquid or dissolved solid analytes
- ➔ convenient, universal soft ionisation for difficult samples (e.g. metal complexes)
- main difference to FI/FD: sample supply under vacuum

LIFDI Sample Supply

ambient pressure:

LIFDI

supplies analyte from the vial directly to the emitter in the ion source without breaking vacuum.

- → sample has <u>no contact</u> with air
- → convenient and fast
- ➔ analysis of air sensitive samples without experimental effort.

vacuum:

solvent evaporated

high voltage switched on

Source: Linden ChroMasSpec GmbH, Germany

SIM Prototype: LIFD at Agilent GC-Q-TOF

LIFDI emitter: tungsten wire with thousands of micro graphite dendrites → large surface for adsorption of sample molecules

- 1. capillary aspirates sample solution (1-3 s)
- 2. 40 60 nL sample reach the emitter (10 s)
- 3. solvent evaporates (5 10 s)
- 4. <u>high voltage on</u>, emitter wire heated (to support diffusion to the wisker tips): emission of sample ions at the whisker tips
- 5. <u>high voltage off</u>: ready for the next sample

LIFDI: when all other techniques fail

- ambiguous NMR data
- elemental analysis not confirming the MW
- ESI ineffectual due to dry toluene as solvent
- MALDI rather impossible under inert conditions

SIM ientific Instruments Manufacturer GmbH

LIFDI revealed intact $Mo(CO)_4[(Sb_4Et_{(6-n)}Pr_n)]^{+\bullet}$ with scrambling alkyl ligands ($1 \le n \le 6$)

Liquid Injection Field Desorption Ionization Mass Spectrometry of Cyclic Metal Carbonyl Complexes with Tetra-Antimony Ligands, H. J. Breunig, H. B. Linden, O. Moldovan, *J. Am. Soc. Mass Spectrom.*, **2013**, 24, 164-166

Source: Linden ChroMasSpec GmbH, Germany

Comparison: EI-DIP and LIFDI with Agilent Q-TOF

Cyclopentandienylruthenium-dicarbonylcomplex

×10 ³ 3.2

3.1· 3·

+El Scan (0.854-1.860 min, 295 Scans) 08-07-13_RU-Komplex_001.D

LIFDI – 7200 Q-TOF: PEG 1000

4. SUMMARY

 enhancement of the MS application range: analysis of low volatile samples (liquid and solid)
MS + GC/MS or LC/MS, LIFDI/MS for soft ionisation

- short analysis time for mass spectra: ideal for high throughput quality control analysis (screening)
- quick changeover from GC/MS and LC/MS to DIP-MS: it is not necessary to uncouple the GC/MS interface
- ease of use for DIP technique: controlled sampling minimizes the change of accidental venting the MS
- extensive data analysis using the tools of MS ChemStation and MassHunter software

possibility of automation and online analysis with PAL autosampler Scientific Instruments Manufacturer GmbH